

ASX ANNOUNCEMENT

ASX CODE: TMX, TMXOA

CAPITAL STRUCTURE

TMX - Shares on Issue 346.53m
TMXOA - Options on Issue 18.24m

- Unlisted Options 73.18m

DIRECTORS & KEY MANAGEMENT

Dick Sandner Non-Exec Chairman

Jonathan Lim Non-Exec Vice Chairman

Alan Coles Managing Director

Paul Dickson Non-Exec Director

Ian Hobson Company Secretary

PRINCIPAL REGISTERED OFFICE

Terrain Minerals Ltd ABN: 45 116 153 514

Suite 4, Level 1 230 Rokeby Road Subiaco 6008 Western Australia

Postal Address
PO Box 1702
Subiaco WA 6904

CONTACT

Alan Coles

Terrain Minerals Ltd
PH: +61 8 9381 5558
Fax: +61 8 9381 5551

WEB: www.terrainminerals.com.au
EMAIL: terrain@terrainminerals.com.au

9 February 2012

Company Announcement

AZTEC DOME DIAMOND DRILLING

Terrain Minerals has completed two deep holes and one hole into its EM anomaly 1 target.

AZRCDD0011 this hole went through 349m of massive and brecciated basalt which included sulphide stringers followed by a sequence of high mag basalts and ultramafics to a depth of 750m. At this depth a porphyry intrusive 21m thick was encountered overlying basalt. The massive basalt continued to the end of the hole at 876.7m.

AZRCDD0012 was drilled on the western side of the dome to an in hole depth of 942.9m. This hole was in massive basalt for the full length of the hole.

EM anomaly target AZRCDD0013 This hole was pre-collared in RC and completed in diamond. It encountered black Shales with pyrrhotite, pyrite and minor chalcopyrite. It was completed at 295m.

Core samples will be taken to test the sulphide stringers, feldspar, pyrite, chalcopyrite and ultramafics. Whole rock analysis and petrology will be carried out to determine the actual character of the basalts and the ultramafics.

All holes have been equipped to allow a geophysical down-hole EM program to be completed. This will target any massive sulphide deposits occurring within a 300m radius around the drill holes.

The rock sequence at Kambalda Dome 12km to the SW is basalt overlying ultramafic komatiite with a basalt base. In hole AZRCDD0011 an overlying and basal basalt were encountered with a series of high mag basalts and ultramafics between them. Although not identical to Kambalda it is similar.

Terrain Minerals will incorporate the factual geological information gained to refine and improve the Aztec Dome geophysical model.

On behalf of the Board:

Alan Coles

Managing Director

a.f. bles

Terrain Minerals Ltd ABN: 45 116 153 514

Contact

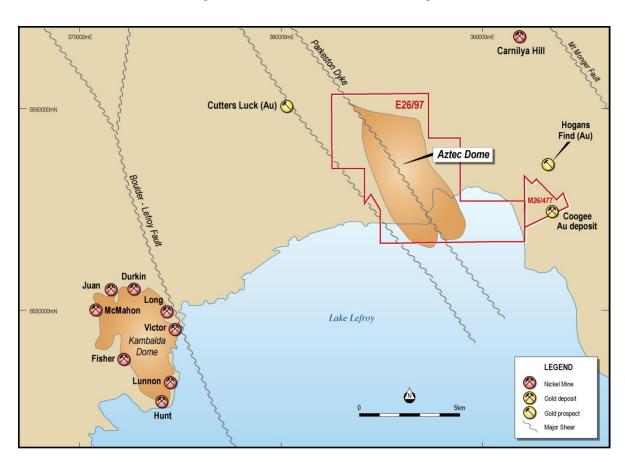
Telephone: +61 8 9381 5558 Facsimile: +61 8 9381 5551

Email: terrain@terrainminerals.com.au

Aztec Dome Drill Log Summaries

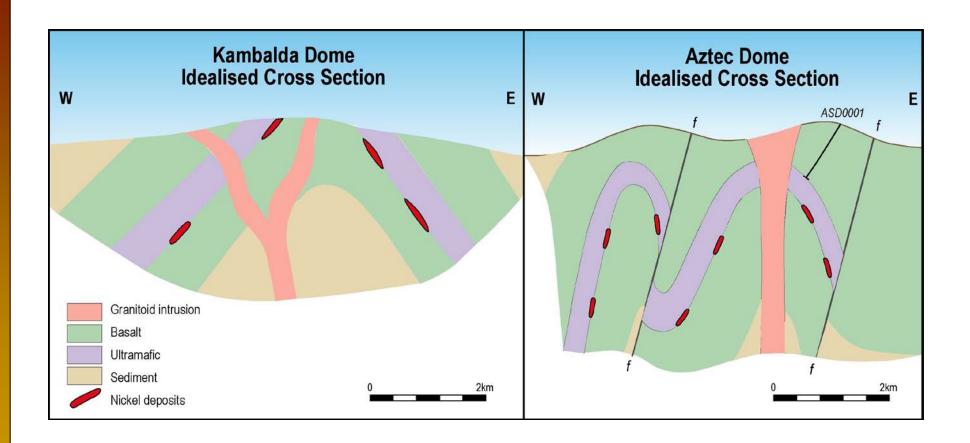
AZRCDD011		388038E	6556555N
0	87	Massive basalts – end of RC precollar	
87	198	Massive and brecciated basalts with trace spinifex texture	
198	349	Massive brecciated basalts	
349	399	Ultramafic's with minor feldspar porphyry	
399	435	Brecciated basalts	
435	439	Feldspar porphyry	
439	470	Massive basalts	
470	750	Thin high magnesium basalts fl	ows with oceilli tops tending
		ultramafic to base of flows	
750	765	Feldspar porphyry	
765	771	Sheared porphyry (Fault zone)	
771	784	Basalt	
784	785	Porphyry	
785	826	Basalt	
826	835	Basalt with intense biotite alte	ration and massive pyrrhotite
		layers	
835	876.7	High Mg-basalt	

AZF	RCDD012	385528E 6556228N			
0	89.9	Basalt in precollar			
89.9	155.8	Basalt			
155.8	172.1	Gabbro/ dolerite			
172.1	207.5	Basalt. Some with plagioclase phenocrysts			
207.5	250	Basalt			
250	252	Porphyry			
252	283.8	Gabbro			
283.8	298	Basalt			
298	312	Gabbro/ dolerite			
312	468	Basalts with strong epidote alteration			
486	548	Basalt			
548	583	Gabbro mg			
583	654.5	Basalt			
654.5	656	Granite			
656	663	Basalt			
663	667	Basalts with strong epidote alteration			
667	728.8	Basalt			
728.8	729.8	Granite			
729.8	732	Basalt			
732	733	Granite			
733	859.9	Basalt			
859.9	862.3	Porphyry			
862.3	898.8	Basalt			
898.8	899	Porphyry			
899	942.9	Basalt			
2					

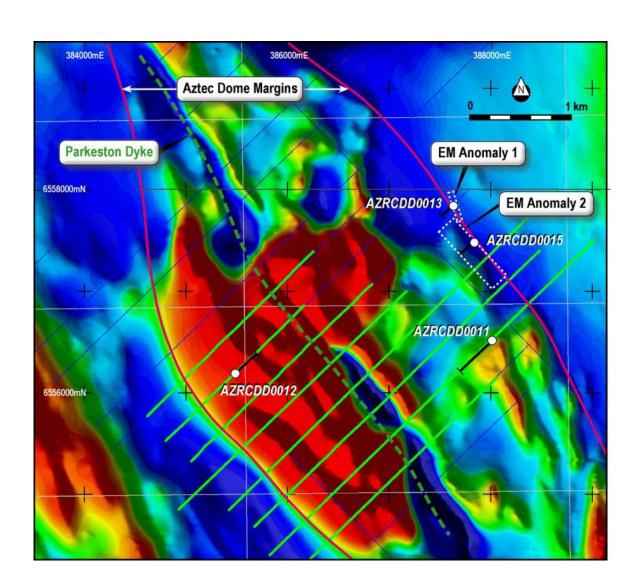


AZRCDD013		387650E 6557860N	
0	22	Upper saprolite	
22	41	lower saprolite	
41	120	Massive Basalt end precollar	
120	127	Massive brecciated basalts	
127	127.6	Shear Zone	
127.6	238.4	Massive Basalt	
238.4	243.2	Shear zone with disseminated sulphides	
243	256.5	Carbonaceous shale with sulphides	
256.5	290.7	Massive basalt	
290.7	295	Meta basalt with increasing amphiboles tending to pyroxenite	

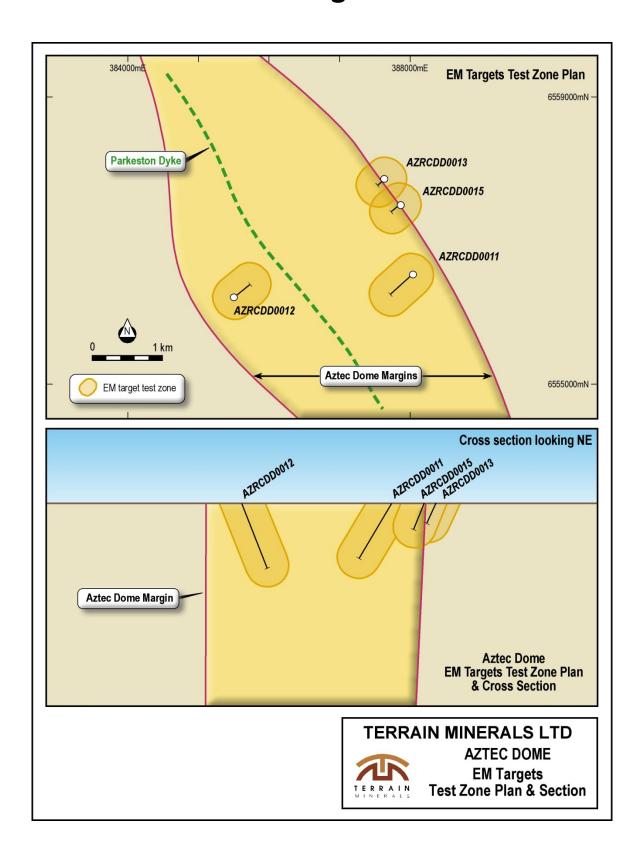
COMPETENT PERSONS STATEMENT


The information in this report that relates to Exploration Results is based on information compiled by Mr Alan Coles, who is a full time employee of Terrain Minerals Ltd. Mr Coles is a Fellow of the Australasian Institute of Mining and Metallurgy (FAusIMM) and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Coles consents to the inclusion in the report of the matters based on information in the form and context in which it appears.

Project Location Map



Kambalda Dome V Aztec Dome



EM Anomalies 1 & 2

Aztec Dome EM Target Test Zones

